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Overview-1—Matrix Elements 
• M3D-C1 is a 3D Implicit Magnetohydrodynamics Code that uses 

high-order finite elements in all 3 directions 
 

• Most of the compute time spent is in either: 
1. Defining the matrix elements 
2. Solving the sparse matrix equations 

 
• We have recently sped up (1.) above by 

•  Rearranging loops to make better reuse of data 
•  Improved vectorization 
•  Use of BLAS intrinsics  (e.g. dgemm) 

 
• We have  also implemented OpenMP to improve memory 

footprint in (1.) 
• Remaining bottleneck is lack of thread-safe matrix insertions 



Overview-2--Solve 

• Solving the sparse matrix equations has 2 elements 
1. Effective preconditioners (SuperLU, STRUMPACK) 
2. Iterative solve using GMRES 

 
• Our algorithm has 3 major linear matrix solves per time-

step that can be performed sequentially 
1. The velocity solve …. Vn+1 

2. The magnetic field solve…Bn+1 

3. The pressure solve….pn+1 

 

• Here, we want to concentrate on the velocity solve as it is 
normally the most time-consuming and has some unique 
properties 



Overview-3—Velocity Solve 

• We now make use of the fact that couplings 
within a toroidal plane are stronger than 
those across planes. 
 

• Preconditioner uses SuperLU or 
STRUMPACK to perform a direct solve 
within each toroidal plane. 

 
• This is effective, but does not scale well beyond a certain size 

 
• There are additional strong physics coupling that we can take 

advantage of that would lead to smaller matrices for the 
SuperLU direct solve.     STRUMPACK may also be able to 
make use of these couplings. 
 
 



Typical Weak Scaling Result 

Different colors correspond to different number of mesh 
points in a given toroidal plane.    Scaling is better when 
increasing the number of planes than when increasing mesh 
points within a plane. 
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 contains all the velocity variables on plane j jX

Because each toroidal plane couples only to adjacent 
toroidal planes, the full velocity matrix is of block-
tridiagonal form.   Corner elements due to periodicity. 

The Velocity Matrix 

1 

2 

3 

N 



 contains all the velocity variables on plane ,

However, there are 3 different kind of velocity variables:  , ,

j j

U 

X

1,

1,

1,

2,

2,

2,

,

,

,

j

j

j

j

j

j

j

M j

M j

M j

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

U

U

ω

χ

ω

ω

χ

U

X

χ

,  contains all 12 DOF

for the variable  at 

node  of plane 

i j

U

i j 

U

,

,

 =

R

Z

RR

RZ

ZZ

i j

R

Z

RR

RZ

ZZ i j

U

U

U

U

U

U

U

U

U

U

U

U













 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

U

2 2 2R RU R   

      V

We presently do not take

into account that the 3 

velocity variables

, , are very differe nt.  U
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We propose rearranging the locations of the unknowns in the 
DOF vector, putting all similar velocity components together. 

Within each plane 
(with M elements), the 
unknown vector will 
first have all the U 

variables, next all the  
variables, and finally all 
the  variables. 
 

The rational for this is 
that these variables 
couple most strongly to 
themselves. 
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Original matrix: 
MAX/MIN= 1013 

 

M3D-C1 can be run with 1, 2, or 3 velocity variables.   Tracking 
the eigenvalues shows how they separate into 3 groups 
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Number of velocity variables 

Annihilation operators 
split this into 3 loosely 
connected matrices, 
each with a condition 
number much less 
than original matrix 
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Instead of a single block for each plane, we now will have 3 blocks for 
each plane.    This should be more efficient and more parallel. 

New form for velocity matrix 



Summary 
• We propose reordering the unknowns for the velocity vector 

so that all similar velocity types  (U, , ) are ordered to be 
adjacent to one another on each plane. 
 

• This will result in 3 times the number of blocks in the block-
Jacobi solve…increased concurrency and smaller direct 
solves. 
 

• This will require help from SCOREC to reorder the unknowns 
on each plane. 
 

• STRUMPACK may also be able to take advantage of this 
reordering. 
 

• This is a generalization of using knowledge of the “physics 
couplings” to produce diagonally dominant block matrix. 


